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For a noncommutative algebra A,
Prim A := { primitive ideals of A } ~ a NC affine variety
Spec A :={ prime ideals of A} ~ a NC affine scheme.
Equip both with Zariski topologies.
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Let q = (qj) € Mn(K*) with gji = q,-J_.1 and g;; =1 for all i, j.
Og(K") := K(x1,...,Xn | XiXj = qjjxjxi ¥V i,]).

Single-parameter version: q;; = fixed g € K* for all i < ;
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EG. A=04(K?), q# V1.
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Thm. [Letzter-KG, 2000] A = Oq(K"). Assume —1 ¢ (qjj) or
char K =2. Then Prim A is a topological quotient of K" and
Spec A is a (compatible) topological quotient of Spec O(K™).

These statements hold more generally for cocycle twists of
commutative affine algebras graded by torsionfree abelian groups,
and hence for quantum toric varieties.
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Conjecture 1: Let A = a generic quantized coordinate ring for an
affine variety V.. Then Spec A and Prim A are
compatible topological quotients of Spec O(V) and max O(V) = V.

Defn. Quantum 2 x 2 matrix algebra := K-alg. O,(M>(K)) with
generators a, b, ¢, d and relations

ab = gba ac = qgca bc = cb

bd = qdb cd = qdc ad —da=(q—q 1)bc
2 x 2 quantum determinant := ad — gbc , central in Oy(M2(K))
Quantum Sky: Og(SLa(K)) := Og(M2(K))/(Dg — 1)
Quantum GLy: O4(GLy(K)) 1= Og(M2(K))[D; ]







SpecA:

~

{(vb— Bc)




Prim O4(SL2(K)), g # V1 :



Prim O4(SL2(K)), g # V1 :

\\\\ Z
NN -7
OO~ o/
N N - //// /
~ - - /
\ N ~ -7 // /
N\ \\ S o 7 < /
. N \\ - s /
— ~ e /
\ N~ ~ /
—~ ~ - N /
00 o= N’ ~a
L o



Prim O4(SL2(K)), g # V1 :

3 topological quotient map SLo(K) — Prim O4(SLy(K)) -

a—a, b c,d—9 ==
[:?] R {( - byc,d=46) (B=v=0) .
{(vb — Bc) (8,7 not both = 0)
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Defns. A = a torsionfree K[t*!]-algebra such that A/(t — 1)A is
commutative;

~ flat family of K-algebras (A/(t — Q)A)qu* :

A/(t — 1) A = the semiclassical limit of this family.

All commutators [a, b] (= ab— ba) in A are divisible by t — 1.
1
.. have a Lie bracket :[7, —] on A,
which induces a Lie bracket {—, —} on A/(t — 1)A.

Additionally, there is a “product rule”:
{axyt ={axty +x{a,y} VaxyeA/(t-1)A

{—,—} is a "Poisson bracket”.
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E.G. The Poisson bracket on O(S5L,(K)) = semiclassical limit of
the O4(SLy(K)):

{a,b} = ab {c,d} =cd
{a,c} = ac {b,d} = bd
{b,c} =0 {a,d} = 2bc
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Defns. A Poisson algebra is an algebra R equipped with a
Lie algebra bracket {—. —} : R X R — R such that
{a, v} ={ax}y +x{a,y} VaxyeR

A Poisson ideal in R is any ideal / such that {R,/} C /.

A Poisson-prime ideal in R is any proper Poisson ideal P such that
(JCP = I CPorJCP) VPoisson ideals /, J.

e R noeth., char K = 0 = "Poisson-prime” = "“Poisson & prime”

A Poisson-primitive ideal is any Poisson ideal P of the form
P = (largest Poisson ideal C M), for some M € maxA.

The Poisson-prime and Poisson-primitive spectra of R are

Pspec R := { Poisson-prime ideals of R }
Pprim R := { Poisson-primitive ideals of R } C PspecR,

both with Zariski topologies.



Thm. [KG, 1997] R = a commutative noetherian Poisson algebra.

e Pspec R is a topological quotient of Spec R, via the map
7 P —— (largest Poisson ideal C P).
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Thm. [KG, 1997] R = a commutative noetherian Poisson algebra.

e Pspec R is a topological quotient of Spec R, via the map
7 P —— (largest Poisson ideal C P).

e Assume R is affine over K and satisfies the Poisson
Dixmier-Moeglin Equivalence; specifically: all P € Pprim R are
locally closed points in Pspec R.

Then Pprim R is a topological quotient of max R, via 7.
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Conjecture 2: Let A = a generic quantized coordinate ring for an
affine variety V/, with semiclassical limit O(V).

Then 3 compatible homeomorphisms Spec A — Pspec O(V) and
Prim A — Pprim O(V).
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Conjecture 2: Let A = a generic quantized coordinate ring for an
affine variety V/, with semiclassical limit O(V).

Then 3 compatible homeomorphisms Spec A — Pspec O(V) and
Prim A — Pprim O(V).
Known cases:

e Quantum affine spaces and quantum affine toric varieties
[Oh-Park-Shin, 2002; Letzter-KG, 2009]

e Quantum symplectic and euclidean spaces [Oh, 2008; Oh-Park,
2002, 2010]

e O4(SLy(K)) and Oq4(GLy(K)) [KG, 2010]
o O4(SL3(K)) [Fryer, 2017]
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Conjecture 3: Let (Aq)qu* = a flat family of quantized

coordinate rings for an affine variety V.

Then SpecA, ~ Spec A; and PrimA, ~ Prim A, V generic
p,q € K*.

12



Conjecture 3: Let (Aq)qu*

coordinate rings for an affine variety V.

= a flat family of quantized

Then SpecA, ~ Spec A; and PrimA, ~ Prim A, V generic
p,q € K*.

Defn. A partially ordered set X is catenary iff V x, y € X, all
saturated chains

X = Xg § X1 é é Xp =Yy

have the same length.
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Catenarity in SpecA :

e Oq(K"), Og(SLn(K)), Og(GL,(K)) [Lenagan-KG, 1996]
e quantized Weyl algebras [Lenagan-KG, 1996; Oh, 1997]

e quantum symplectic and euclidean spaces [Oh, 1997; Horton,
2003]

e Og(Mpm »(K)) [Cauchon, 2003]

e quantum semisimple groups [Zhang-KG, 2007; Yakimov, 2014]
e quantum Grassmannians [Launois-Lenagan-Rigal, 2008]

e quantum Schubert cells [Yakimov, 2013]

e quantum nilpotent algebras [Launois-KG, 2020]
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Catenarity in SpecA :

e Oq(K"), Og(SLn(K)), Og(GL,(K)) [Lenagan-KG, 1996]
e quantized Weyl algebras [Lenagan-KG, 1996; Oh, 1997]

e quantum symplectic and euclidean spaces [Oh, 1997; Horton,
2003]

e Og(Mpm »(K)) [Cauchon, 2003]

e quantum semisimple groups [Zhang-KG, 2007; Yakimov, 2014]
e quantum Grassmannians [Launois-Lenagan-Rigal, 2008]

e quantum Schubert cells [Yakimov, 2013]

e quantum nilpotent algebras [Launois-KG, 2020]

Catenarity in PspecR :

e Poisson nilpotent algebras [Launois-KG, 2022]

e E.g., semiclassical limits of above A.
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Stratification. [Letzter-KG, 2000; Stafford-KG, 2000]

A = a noetherian K-algebra satisfying the NC Nullstellensatz,
H = a torus (K*)" acting rationally on A, with H-Spec A finite.

Then SpecA = [ |)cp specaSPEC, A Where
Spec; A:={ P € SpecA | (e h(P)=J}
and Spec; A ~ SpecZ; where
Z; = center of a localization of A/J,

2 a Laurent polynomial ring over K.
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Stratification. [Letzter-KG, 2000; Stafford-KG, 2000]

A = a noetherian K-algebra satisfying the NC Nullstellensatz,
H = a torus (K*)" acting rationally on A, with H-Spec A finite.

Then SpecA = [ |)cp specaSPEC, A Where
Spec; A:={ P € SpecA | (e h(P)=J}
and Spec; A ~ SpecZ; where
Z; = center of a localization of A/J,

2 a Laurent polynomial ring over K.

3 corresponding partition Prim A = |_|J€H_SpecA Prim; A

and each Prim; A~ maxZ;.
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For J C J' in H-Spec A, define
¢, : Cl(Spec; A) — Cl(Spec A), Y — Y NSpec, A
¢, ClI(Primy A) — CI(Primy A), Y — Y N Prim, A
where C/(T) = {closed subsets of T }.
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For J C J' in H-Spec A, define
¢, : Cl(Spec; A) — Cl(Spec A), Y — Y NSpec, A
¢, ClI(Primy A) — CI(Primy A), Y — Y N Prim, A
where C/(T) = {closed subsets of T }.

The closed subsets of Spec A are the subsets X such that
e X NSpec; A € Cl(Spec; A) for all J;
e ¢, (XNSpec;A) C XNSpecy A forall JCJ.

Similarly for the closed subsets of Prim A.
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Conjecture 4: [Brown-KG, 2015] (A as in Stratification Thm.)

For J C J' in H-Spec A, 3 an affine variety V/,; and morphisms

PrimJ/ A

\
81

PrimJA VJJ/

such that ¢/, (Y) = £} (g (Y)) for Y € CI(Prim, A).
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Conjecture 4: [Brown-KG, 2015] (A as in Stratification Thm.)

For J C J' in H-Spec A, 3 an affine variety V/,; and morphisms

\
81

PrimJA VJJ/

PrimJ/ A

such that ¢/, (Y) = £} (g (Y)) for Y € CI(Prim, A).

Similarly for ¢, , with morphisms of affine schemes.

Known cases: o Oy(Ma(K)), Og(GL2(K)), Oq(SL2(K)),
Oq4(SL3(K)) [Brown-KG, 2015]

e Poisson analog for O(SL3(K)) [Fryer, 2017]
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E.G. Types of auxiliary data for Prim O,(GL>(K)) :

K* (K*)Z
N N
(K*)Z incl K x K* (K*)Z Pra K*
(K*)?
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K*
Concerning
(K*)2 — o K x K>

@', sends finite sets to @
qbﬁj, cannnot be given by closures of images under any map
(K*)Z N K*,

nor by inverse images under any map K* — (K*)2.
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THANK YOU !
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EG. A= 0q4(GLa(K)), q# V1
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