Spectra of Quantum Algebras

Ken Goodearl

Quantum Groups Seminar 24 June 2024 Fix an algebraically closed base field K.

In discussions of Poisson structures, assume char K = 0.

Fix an algebraically closed base field K.

In discussions of Poisson structures, assume char K = 0.

For a noncommutative algebra A,

 $Prim A := \{ primitive ideals of A \} \approx a NC affine variety$

Spec $A := \{ \text{ prime ideals of } A \} \approx \text{ a NC affine scheme.}$

Equip both with Zariski topologies.

Let $\mathbf{q} = (q_{ij}) \in M_n(K^*)$ with $q_{ji} = q_{ji}^{-1}$ and $q_{ii} = 1$ for all i, j.

$$\mathcal{O}_{\mathbf{q}}(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q_{ij} x_j x_i \ \forall \ i,j \rangle.$$

Let $\mathbf{q}=(q_{ij})\in M_n(K^*)$ with $q_{ji}=q_{ij}^{-1}$ and $q_{ii}=1$ for all i,j.

$$\mathcal{O}_{\mathbf{q}}(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q_{ij} x_j x_i \ \forall \ i, j \rangle.$$

Single-parameter version: $q_{ij} = \text{fixed } q \in K^* \text{ for all } i < j$;

$$\mathcal{O}_q(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q x_j x_i \ \forall \ i < j \rangle.$$

Let $\mathbf{q}=(q_{ij})\in M_n(K^*)$ with $q_{ji}=q_{ij}^{-1}$ and $q_{ii}=1$ for all i,j.

$$\mathcal{O}_{\mathbf{q}}(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q_{ij} x_j x_i \ \forall \ i, j \rangle.$$

Single-parameter version: $q_{ij} = \text{fixed } q \in K^* \text{ for all } i < j$;

$$\mathcal{O}_q(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q x_j x_i \ \forall \ i < j \rangle.$$

E.G.
$$A = \mathcal{O}_q(K^2), q \neq \sqrt[4]{1}$$
.

Let $\mathbf{q}=(q_{ij})\in M_n(K^*)$ with $q_{ji}=q_{ij}^{-1}$ and $q_{ii}=1$ for all i,j.

$$\mathcal{O}_{\mathbf{q}}(K^n) := K\langle x_1, \dots, x_n \mid x_i x_j = q_{ij} x_j x_i \ \forall \ i, j \rangle.$$

Single-parameter version: $q_{ij} = \text{fixed } q \in K^* \text{ for all } i < j$;

$$\mathcal{O}_q(K^n) := K\langle x_1, \ldots, x_n \mid x_i x_j = q x_j x_i \ \forall \ i < j \rangle.$$

E.G.
$$A = \mathcal{O}_q(K^2), q \neq \sqrt[4]{1}.$$

Thm. [Letzter-KG, 2000] $A = \mathcal{O}_{\mathbf{q}}(K^n)$. Assume $-1 \notin \langle q_{ij} \rangle$ or char K = 2. Then Prim A is a topological quotient of K^n and Spec A is a (compatible) topological quotient of Spec $\mathcal{O}(K^n)$.

These statements hold more generally for cocycle twists of commutative affine algebras graded by torsionfree abelian groups, and hence for quantum toric varieties.

Conjecture 1: Let A = a generic quantized coordinate ring for an affine variety V. Then Spec A and Prim A are compatible topological quotients of Spec $\mathcal{O}(V)$ and $\max \mathcal{O}(V) \approx V$.

Conjecture 1: Let A = a generic quantized coordinate ring for an affine variety V. Then Spec A and Prim A are compatible topological quotients of Spec $\mathcal{O}(V)$ and $\max \mathcal{O}(V) \approx V$.

<u>Defn.</u> Quantum 2×2 matrix algebra := K-alg. $\mathcal{O}_q(M_2(K))$ with generators a, b, c, d and relations

$$ab = qba$$
 $ac = qca$ $bc = cb$

$$bd = qdb$$
 $cd = qdc$ $ad - da = (q - q^{-1})bc$

Conjecture 1: Let A = a generic quantized coordinate ring for an affine variety V. Then $\operatorname{Spec} A$ and $\operatorname{Prim} A$ are compatible topological quotients of Spec $\mathcal{O}(V)$ and max $\mathcal{O}(V) \approx V$.

Defn. Quantum 2×2 matrix algebra := K-alg. $\mathcal{O}_{\sigma}(M_2(K))$ with generators a, b, c, d and relations

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$
 2×2 quantum determinant := $ad - qbc$, central in $\mathcal{O}_q(M_2(K))$

Conjecture 1: Let A = a generic quantized coordinate ring for an affine variety V. Then Spec A and Prim A are compatible topological quotients of Spec $\mathcal{O}(V)$ and $\max \mathcal{O}(V) \approx V$.

<u>Defn.</u> Quantum 2×2 matrix algebra := K-alg. $\mathcal{O}_q(M_2(K))$ with generators a, b, c, d and relations

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$

$$2 \times 2$$
 quantum determinant $:= ad - qbc$, central in $\mathcal{O}_q(M_2(K))$

Quantum
$$SL_2$$
: $\mathcal{O}_q(SL_2(K)) := \mathcal{O}_q(M_2(K))/\langle D_q - 1 \rangle$

Conjecture 1: Let A = a generic quantized coordinate ring for an affine variety V. Then Spec A and Prim A are compatible topological quotients of Spec $\mathcal{O}(V)$ and $\max \mathcal{O}(V) \approx V$.

<u>Defn.</u> Quantum 2×2 matrix algebra := K-alg. $\mathcal{O}_q(M_2(K))$ with generators a, b, c, d and relations

$$ab = qba$$
 $ac = qca$ $bc = cb$
 $bd = qdb$ $cd = qdc$ $ad - da = (q - q^{-1})bc$

$$bu = qub \qquad cu = quc \qquad au = ua = (q - q)bc$$

$$2 \times 2$$
 quantum determinant $:= ad - qbc$, central in $\mathcal{O}_q(M_2(K))$

Quantum
$$GL_2$$
: $\mathcal{O}_q(GL_2(K)) := \mathcal{O}_q(M_2(K))[D_q^{-1}]$

E.G. $A = \mathcal{O}_q(SL_2(K)), q \neq \sqrt[6]{1}$.

E.G.
$$A = \mathcal{O}_q(SL_2(K)), q \neq \sqrt[6]{1}$$
.

Prim $\mathcal{O}_q(SL_2(K))$, $q \neq \sqrt[\bullet]{1}$:

Prim $\mathcal{O}_q(SL_2(K)), \quad q \neq \sqrt[q]{1}$:

Prim $\mathcal{O}_q(SL_2(K)), \quad q \neq \sqrt[4]{1}$:

 \exists topological quotient map $SL_2(K) \longrightarrow \operatorname{Prim} \mathcal{O}_q(SL_2(K))$:

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \longmapsto \begin{cases} \langle a - \alpha, b, c, d - \delta \rangle & (\beta = \gamma = 0) \\ \langle \gamma b - \beta c \rangle & (\beta, \gamma \text{ not both } = 0) \end{cases}$$

Defns. A = a torsionfree $K[t^{\pm 1}]$ -algebra such that A/(t-1)A is commutative;

 \sim flat family of K-algebras $(A/(t-q)A)_{q\in K^*}$.

Defins. A = a torsionfree $K[t^{\pm 1}]$ -algebra such that A/(t-1)A is commutative;

$$\sim$$
 flat family of K-algebras $(\mathcal{A}/(t-q)\mathcal{A})_{q\in K^*}$.

$$\mathcal{A}/(t-1)\mathcal{A}=$$
 the semiclassical limit of this family.

Defins. A = a torsionfree $K[t^{\pm 1}]$ -algebra such that A/(t-1)A is commutative:

$$\sim$$
 flat family of K-algebras $\left(\mathcal{A}/(t- extstyle{q})\mathcal{A}
ight)_{ extstyle{q}\in\mathcal{K}^*}$.

$$\mathcal{A}/(t-1)\mathcal{A}=$$
 the semiclassical limit of this family.

All commutators [a, b] (= ab - ba) in \mathcal{A} are divisible by t - 1.

$$\therefore$$
 have a Lie bracket $\frac{1}{t-1}[-,-]$ on \mathcal{A} ,

which induces a Lie bracket $\{-,-\}$ on $\mathcal{A}/(t-1)\mathcal{A}$.

<u>Defns.</u> $\mathcal{A}=$ a torsionfree $K[t^{\pm 1}]$ -algebra such that $\mathcal{A}/(t-1)\mathcal{A}$ is commutative;

$$\sim$$
 flat family of K-algebras $(\mathcal{A}/(t-q)\mathcal{A})_{q\in K^*}$.

 $\mathcal{A}/(t-1)\mathcal{A}=$ the semiclassical limit of this family.

All commutators [a, b] (= ab - ba) in \mathcal{A} are divisible by t - 1.

$$\therefore$$
 have a Lie bracket $\frac{1}{t-1}[-,-]$ on \mathcal{A} ,

which induces a Lie bracket $\{-,-\}$ on $\mathcal{A}/(t-1)\mathcal{A}$.

Additionally, there is a "product rule":

$${a, xy} = {a, x}y + x{a, y} \quad \forall \ a, x, y \in \mathcal{A}/(t-1)\mathcal{A}.$$

 $\{-,-\}$ is a "Poisson bracket".

E.G. The Poisson bracket on $\mathcal{O}(SL_2(K))$ = semiclassical limit of the $\mathcal{O}_q(SL_2(K))$:

E.G. The Poisson bracket on $\mathcal{O}(SL_2(K))$ = semiclassical limit of the $\mathcal{O}_q(SL_2(K))$:

$$\{a,b\} = ab$$
 $\{c,d\} = cd$
 $\{a,c\} = ac$ $\{b,d\} = bd$
 $\{b,c\} = 0$ $\{a,d\} = 2bc$

Defns. A Poisson algebra is an algebra R equipped with a Lie algebra bracket $\{-,-\}$: $R \times R \to R$ such that $\{a,xy\} = \{a,x\}y + x\{a,y\} \quad \forall \ a,x,y \in R$.

<u>Defns.</u> A <u>Poisson algebra</u> is an algebra R equipped with a <u>Lie algebra bracket</u> $\{-,-\}$: $R \times R \to R$ such that

$$\{a, xy\} = \{a, x\}y + x\{a, y\} \quad \forall \ a, x, y \in R.$$

A Poisson ideal in R is any ideal I such that $\{R, I\} \subseteq I$.

<u>Defns.</u> A <u>Poisson algebra</u> is an algebra R equipped with a Lie algebra bracket $\{-,-\}$: $R \times R \to R$ such that $\{a,xy\} = \{a,x\}y + x\{a,y\} \quad \forall \ a,x,y \in R$.

A Poisson ideal in R is any ideal I such that $\{R, I\} \subseteq I$.

A Poisson-prime ideal in R is any proper Poisson ideal P such that $(IJ \subseteq P \implies I \subseteq P \text{ or } J \subseteq P) \forall \text{ Poisson ideals } I, J.$

Defns. A Poisson algebra is an algebra R equipped with a Lie algebra bracket $\{-,-\}$: $R \times R \to R$ such that $\{a,xy\} = \{a,x\}y + x\{a,y\} \quad \forall \ a,x,y \in R$.

A <u>Poisson ideal</u> in R is any ideal I such that $\{R, I\} \subseteq I$.

A Poisson-prime ideal in R is any proper Poisson ideal P such that $\overline{(IJ \subseteq P \implies I \subseteq P \text{ or } J \subseteq P)} \forall \text{ Poisson ideals } I, J.$

• R noeth., char $K = 0 \Rightarrow$ "Poisson-prime" = "Poisson & prime"

Defns. A Poisson algebra is an algebra R equipped with a Lie algebra bracket $\{-,-\}$: $R \times R \to R$ such that $\{a,xy\} = \{a,x\}y + x\{a,y\} \quad \forall \ a,x,y \in R$.

A <u>Poisson ideal</u> in R is any ideal I such that $\{R, I\} \subseteq I$.

A Poisson-prime ideal in R is any proper Poisson ideal P such that $\overline{(IJ \subseteq P \implies I \subseteq P \text{ or } J \subseteq P)} \forall \text{ Poisson ideals } I, J.$

• R noeth., char $K = 0 \Rightarrow$ "Poisson-prime" = "Poisson & prime"

A Poisson-primitive ideal is any Poisson ideal P of the form $P = (\text{largest Poisson ideal} \subseteq M)$, for some $M \in \max A$.

<u>Defns.</u> A <u>Poisson algebra</u> is an algebra R equipped with a Lie algebra bracket $\{-,-\}$: $R \times R \to R$ such that $\{a,xy\} = \{a,x\}y + x\{a,y\} \quad \forall \ a,x,y \in R$.

A <u>Poisson ideal</u> in R is any ideal I such that $\{R, I\} \subseteq I$.

A Poisson-prime ideal in R is any proper Poisson ideal P such that $(IJ \subseteq P \implies I \subseteq P \text{ or } J \subseteq P) \forall \text{ Poisson ideals } I, J.$

- R noeth., char $K = 0 \Rightarrow$ "Poisson-prime" = "Poisson & prime"
- A <u>Poisson-primitive ideal</u> is any Poisson ideal P of the form $P = (\text{largest Poisson ideal} \subseteq M)$, for some $M \in \max A$.

The $\underline{\text{Poisson-prime}}$ and $\underline{\text{Poisson-primitive spectra}}$ of R are

 $\mathsf{Pspec}\,R := \{ \; \mathsf{Poisson\text{-}prime ideals of} \; R \; \}$

Pprim $R := \{ \text{ Poisson-primitive ideals of } R \} \subseteq \text{Pspec } R$,

both with Zariski topologies.

Thm. [KG, 1997] R = a commutative noetherian Poisson algebra.

• Pspec R is a topological quotient of Spec R, via the map $\pi: P \longmapsto ($ largest Poisson ideal $\subseteq P$).

Thm. [KG, 1997] R = a commutative noetherian Poisson algebra.

- Pspec R is a topological quotient of Spec R, via the map $\pi: P \longmapsto ($ largest Poisson ideal $\subseteq P$).
- Assume R is affine over K and satisfies the Poisson Dixmier-Moeglin Equivalence; specifically: all $P \in \operatorname{Pprim} R$ are locally closed points in Pspec R.

Then Pprim R is a topological quotient of $\max R$, via π .

Conjecture 2: Let A = a generic quantized coordinate ring for an affine variety V, with semiclassical limit $\mathcal{O}(V)$.

Then \exists compatible homeomorphisms $\operatorname{Spec} A \longrightarrow \operatorname{Pspec} \mathcal{O}(V)$ and $\operatorname{Prim} A \longrightarrow \operatorname{Pprim} \mathcal{O}(V)$.

Conjecture 2: Let A = a generic quantized coordinate ring for an affine variety V, with semiclassical limit $\mathcal{O}(V)$.

Then \exists compatible homeomorphisms $\operatorname{Spec} A \longrightarrow \operatorname{Pspec} \mathcal{O}(V)$ and $\operatorname{Prim} A \longrightarrow \operatorname{Pprim} \mathcal{O}(V)$.

Known cases:

- Quantum affine spaces and quantum affine toric varieties [Oh-Park-Shin, 2002; Letzter-KG, 2009]
- Quantum symplectic and euclidean spaces [Oh, 2008; Oh-Park, 2002, 2010]
- $\mathcal{O}_q(SL_2(K))$ and $\mathcal{O}_q(GL_2(K))$ [KG, 2010]
- $\mathcal{O}_q(SL_3(K))$ [Fryer, 2017]

<u>Conjecture 3</u>: Let $(A_q)_{q \in K^*} = a$ flat family of quantized coordinate rings for an affine variety V.

Then $\operatorname{Spec} A_p \approx \operatorname{Spec} A_q$ and $\operatorname{Prim} A_p \approx \operatorname{Prim} A_q \ \forall$ generic $p, q \in K^*$.

Conjecture 3: Let $(A_q)_{q \in K^*} =$ a flat family of quantized coordinate rings for an affine variety V.

Then $\operatorname{Spec} A_p \approx \operatorname{Spec} A_q$ and $\operatorname{Prim} A_p \approx \operatorname{Prim} A_q \ \forall$ generic $p, q \in K^*$.

<u>Defn.</u> A partially ordered set X is <u>catenary</u> iff $\forall x, y \in X$, all saturated chains

$$x = x_0 \leq x_1 \leq \cdots \leq x_n = y$$

have the same length.

Catenarity in $\operatorname{\mathsf{Spec}} A$:

- $\mathcal{O}_{\mathbf{q}}(K^n)$, $\mathcal{O}_q(SL_n(K))$, $\mathcal{O}_q(GL_n(K))$ [Lenagan-KG, 1996]
- quantized Weyl algebras [Lenagan-KG, 1996; Oh, 1997]
- quantum symplectic and euclidean spaces [Oh, 1997; Horton, 2003]
 - $\mathcal{O}_q(M_{m,n}(K))$ [Cauchon, 2003]
 - quantum semisimple groups [Zhang-KG, 2007; Yakimov, 2014]
 - quantum Grassmannians [Launois-Lenagan-Rigal, 2008]
 - quantum Schubert cells [Yakimov, 2013]
 - quantum nilpotent algebras [Launois-KG, 2020]

Catenarity in $\operatorname{Spec} A$:

- $\mathcal{O}_{\mathbf{q}}(K^n)$, $\mathcal{O}_q(SL_n(K))$, $\mathcal{O}_q(GL_n(K))$ [Lenagan-KG, 1996]
- quantized Weyl algebras [Lenagan-KG, 1996; Oh, 1997]
- quantum symplectic and euclidean spaces [Oh, 1997; Horton, 2003]
 - $\mathcal{O}_q(M_{m,n}(K))$ [Cauchon, 2003]
 - quantum semisimple groups [Zhang-KG, 2007; Yakimov, 2014]
 - quantum Grassmannians [Launois-Lenagan-Rigal, 2008]
 - quantum Schubert cells [Yakimov, 2013]
 - quantum nilpotent algebras [Launois-KG, 2020]

Catenarity in Pspec R:

- Poisson nilpotent algebras [Launois-KG, 2022]
- E.g., semiclassical limits of above A.

Stratification. [Letzter-KG, 2000; Stafford-KG, 2000]

A = a noetherian K-algebra satisfying the NC Nullstellensatz,

 $H = a \text{ torus } (K^*)^r \text{ acting rationally on } A, \text{ with } H\text{-Spec } A \text{ finite.}$

Then
$$\operatorname{Spec} A = \coprod_{J \in H\operatorname{-Spec} A} \operatorname{Spec}_J A$$
 where

$$\operatorname{\mathsf{Spec}}_J A := \{ P \in \operatorname{\mathsf{Spec}} A \mid \bigcap_{h \in H} h(P) = J \}$$

and $\operatorname{Spec}_J A \approx \operatorname{Spec} Z_J$ where

$$Z_J = \text{center of a localization of } A/J,$$

 \cong a Laurent polynomial ring over K.

Stratification. [Letzter-KG, 2000; Stafford-KG, 2000]

 $A={\sf a}$ noetherian $K{\sf -algebra}$ satisfying the NC Nullstellensatz,

 $H = a \text{ torus } (K^*)^r \text{ acting rationally on } A, \text{ with } H\text{-Spec } A \text{ finite.}$

Then $\operatorname{Spec} A = \coprod_{J \in H\operatorname{-Spec} A} \operatorname{Spec}_J A$ where

$$\operatorname{\mathsf{Spec}}_J A := \{ \ P \in \operatorname{\mathsf{Spec}} A \mid \bigcap_{h \in H} h(P) = J \ \}$$

and $\operatorname{Spec}_J A \approx \operatorname{Spec} Z_J$ where

 $Z_J = \text{center of a localization of } A/J,$

 \cong a Laurent polynomial ring over K.

 \exists corresponding partition $\operatorname{Prim} A = \coprod_{J \in H\text{-Spec }A} \operatorname{Prim}_J A$ and each $\operatorname{Prim}_J A \approx \max Z_J$.

For $J \subset J'$ in H-Spec A, define

$$\phi_{JJ'}^{s}: \mathcal{C}I(\operatorname{Spec}_{J}A) \longrightarrow \mathcal{C}I(\operatorname{Spec}_{J'}A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Spec}_{J'}A$$

$$\phi_{JJ'}^{p}: \mathcal{C}I(\operatorname{Prim}_{J}A) \longrightarrow \mathcal{C}I(\operatorname{Prim}_{J'}A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Prim}_{J'}A$$
where $\mathcal{C}I(T) = \{ \text{ closed subsets of } T \}.$

For $J \subset J'$ in H-Spec A, define

$$\phi_{JJ'}^s: \mathcal{C}I(\operatorname{Spec}_J A) \longrightarrow \mathcal{C}I(\operatorname{Spec}_{J'} A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Spec}_{J'} A$$

$$\phi_{JJ'}^p: \mathcal{C}I(\operatorname{Prim}_J A) \longrightarrow \mathcal{C}I(\operatorname{Prim}_{J'} A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Prim}_{J'} A$$
where $\mathcal{C}I(T) = \{ \text{closed subsets of } T \}.$

The closed subsets of $\operatorname{\mathsf{Spec}} A$ are the subsets X such that

- $X \cap \operatorname{Spec}_J A \in \mathcal{C}I(\operatorname{Spec}_J A)$ for all J;
- $\phi_{JJ'}^s(X \cap \operatorname{Spec}_J A) \subseteq X \cap \operatorname{Spec}_J A$ for all $J \subset J'$.

For $J \subset J'$ in H-Spec A, define

$$\phi_{JJ'}^s : \mathcal{C}I(\operatorname{Spec}_J A) \longrightarrow \mathcal{C}I(\operatorname{Spec}_{J'} A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Spec}_{J'} A$$

$$\phi_{JJ'}^p : \mathcal{C}I(\operatorname{Prim}_J A) \longrightarrow \mathcal{C}I(\operatorname{Prim}_{J'} A), \quad Y \longmapsto \overline{Y} \cap \operatorname{Prim}_{J'} A$$
where $\mathcal{C}I(T) = \{ \text{ closed subsets of } T \}.$

The closed subsets of $\operatorname{\mathsf{Spec}} A$ are the subsets X such that

- $X \cap \operatorname{Spec}_J A \in \mathcal{C}I(\operatorname{Spec}_J A)$ for all J;
- $\phi_{JJ'}^s(X \cap \operatorname{Spec}_J A) \subseteq X \cap \operatorname{Spec}_{J'} A$ for all $J \subset J'$.

Similarly for the closed subsets of Prim A.

Conjecture 4: [Brown-KG, 2015] (A as in Stratification Thm.)

For $J \subset J'$ in H-Spec A, \exists an affine variety $V_{JJ'}$ and morphisms

$$Prim_{J'} A$$

$$Prim_{J} A \xrightarrow{g_{JJ'}} V_{JJ'}$$

such that $\phi_{JJ'}^p(Y) = f_{JJ'}^{-1}(\overline{g_{JJ'}(Y)})$ for $Y \in \mathcal{C}I(\operatorname{Prim}_J A)$.

Conjecture 4: [Brown-KG, 2015] (A as in Stratification Thm.)

For $J \subset J'$ in H-Spec A, \exists an affine variety $V_{JJ'}$ and morphisms

such that $\phi_{JJ'}^p(Y) = f_{JJ'}^{-1}(\overline{g_{JJ'}(Y)})$ for $Y \in \mathcal{C}I(\operatorname{Prim}_J A)$.

Similarly for $\phi_{II'}^{s}$, with morphisms of affine schemes.

Conjecture 4: [Brown-KG, 2015] (A as in Stratification Thm.)

For $J \subset J'$ in H-Spec A, \exists an affine variety $V_{JJ'}$ and morphisms

$$Prim_{J'} A \xrightarrow{g_{JJ'}} V_{JJ'}$$

such that
$$\phi_{II'}^p(Y) = f_{II'}^{-1}(\overline{g_{JJ'}(Y)})$$
 for $Y \in \mathcal{C}I(\text{Prim}_J A)$.

Similarly for ϕ_{II}^s , with morphisms of affine schemes.

Known cases:
$$\bullet$$
 $\mathcal{O}_q(M_2(K))$, $\mathcal{O}_q(GL_2(K))$, $\mathcal{O}_q(SL_2(K))$, $\mathcal{O}_q(SL_3(K))$ [Brown-KG, 2015]

• Poisson analog for $\mathcal{O}(SL_3(K))$ [Fryer, 2017]

E.G. Types of auxiliary data for $Prim \mathcal{O}_q(GL_2(K))$:

 $\phi^{\it p}_{\it JJ'}$ sends finite sets to \varnothing

 $\phi_{JJ'}^p$ sends finite sets to \varnothing

 $\therefore \phi_{JJ'}^{\rho}$ cannnot be given by closures of images under any map $(K^*)^2 \longrightarrow K^*$,

 $\phi_{JJ'}^p$ sends finite sets to \varnothing

 $\therefore \phi^p_{JJ'}$ cannnot be given by closures of images under any map $(K^*)^2 \longrightarrow K^*$,

nor by inverse images under any map $K^* o (K^*)^2$.

THANK YOU!

E.G. $A = \mathcal{O}_q(GL_2(K)), q \neq \sqrt[4]{1}$. Spec A:

$$\langle a - \alpha, b, c, d - \delta \rangle$$
 $(\alpha, \delta \in k^{\times})$

$$(\alpha, \delta \in k^{\times})$$

$$\frac{\langle b, c, p_{\alpha, \delta} \rangle}{\langle a, \delta \in k^{\times} \rangle}$$

$$\langle b, c \rangle$$

$$(\mu,\lambda\in k^{ imes})$$

$$\frac{\langle p'_{\mu,\lambda} \rangle}{\langle p'_{\mu,\lambda} \rangle}$$

$$\frac{\langle p'_{\mu,\lambda} \rangle}{\langle 0 \rangle}$$

 $\frac{-\langle c, ad - \lambda \rangle - - \langle c, ad - \lambda \rangle}{\langle \lambda \in k^{\times} \rangle}$

 $---\langle b, ad - \lambda \rangle ---$

\ \langle b\ \

 $(\lambda \in k^{\times})$